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Abstract

We model multi-unit auctions in which bidders’ valuations are multi-
dimensional private information. We show that the last-accepted-bid
uniform-pricing rule admits a unique equilibrium with a simple char-
acterization, while the first-rejected-bid uniform-pricing rule admits
many equilibria, many of which provide zero expected revenue. In a
natural example, equilibrium strategies in the last-accepted-bid auc-
tion are constructed from familiar strategies for single-unit first-price
auctions. In contrast with the information pooling we prove to arise in
the first-rejected-bid and pay-as-bid auctions, the unique equilibrium
of the last-accepted-bid auction is fully revealing.

1 Introduction

In a uniform-price auction bidders submit demand functions to a seller who
awards m units of a homogeneous good to the highest m bids at a sin-
gle clearing price that applies to all bids.1 These rules govern well-known
large-scale auctions, such as those run by the U.S. Treasury and the inde-
pendent system operators in charge of electricity distribution, but they have
also been used to model decentralized oligopoly markets under the guise of

∗burketje@wfu.edu; Wake Forest University.
†kyle.woodward@unc.edu; UNC at Chapel Hill.
1These rules are easily modified to accommodate bidders submitting supply curves to

sell goods, sale of a divisible good and/or a seller using a non-constant supply (or demand)
schedule. With indivisible goods the clearing price may in principle be the last accepted
bid, the first rejected bid or any amount in between.

1

mailto:burketje@wfu.edu
mailto:kyle.woodward@unc.edu


competition in supply functions [Klemperer and Meyer, 1989, Vives, 2011].
Despite their importance and apparent simplicity, we have a limited under-
standing of equilibrium behavior in these auctions when bidders have private
information.

Analysis of these auctions is complicated by the multidimensional struc-
ture of bids, and the cross-dimensional information coupling that this im-
plies. One such source of complication, identified by Vickrey [1961], is the
fact that a bid on one unit may influence the price paid on prior units.
A straightforward consequence is that bidding up to one’s value on every
marginal unit is weakly a dominated strategy — bidders engage in demand
reduction [Ausubel et al., 2014].2 The degree of demand reduction for a sin-
gle bid may depend on the how many prior units a bidder has bid on as well
as on the bidder’s marginal values for those units. A competing bidder’s in-
ferences about the probability of winning against each bid must take these
factors into account. To avoid these difficulties in models with privately
informed bidders, authors have restricted attention to cases in which bid-
ders demand exactly two goods [Ausubel et al., 2014, Engelbrecht-Wiggans
and Kahn, 1998],3 or to divisible-good models in which bidders have linear
demands determined by normally distributed intercepts [Kyle, 1989, Vives,
2011].

We present a new approach towards modeling this auction in which bid-
ders have multi-dimensional private information about their demand for any
number of units of an indivisible good. The model allows one to flexibly spec-
ify each bidder’s expected number of units demanded at each price, referred
to as a bidder’s mean demand curve, while imposing restrictions on the dis-
tribution of realized demand curves about this mean demand curve. We
show that this model, applied to the last-accepted-bid uniform-pricing rule,
is tractable and yields equilibrium behavior with several desirable properties,
especially when compared to existing models.

We first show that with two bidders the equilibrium bids for each marginal
unit take the form of bids from an asymmetric first-price auction for a sin-
gle unit. If the two bidders’ demands are symmetric, the bid curves can be
solved for in closed form as in the first-price auction. Whereas the modern
literature on uniform-price auctions — and multi-unit auctions more gen-

2Intuitively, a bidder reduces his bid below his demand curve for the same reason a
monopolist’s marginal revenue curve falls below its demand curve.

3With two goods and a pricing rule that specifies that the clearing price is equal to
the first rejected bid, bidders have a weakly dominant strategy to bid their marginal value
on the first unit. This leaves one bid per bidder to be determined in a natural class of
equilibria.
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erally — emphasizes differences between equilibrium bidding strategies in
a multi-unit auction and a single-unit auction, we find a close connection
between our model of the uniform-price auction and the first-price auction.4

An immediate implication is that many of the results from the first-price
auction literature translate directly to our environment. For example, we
are able to draw a connection between the relationship between two bid-
ders’ mean demand curves and how aggressively they bid in the auction.
By extending the work of Maskin and Riley [2000] we can classify the mean
demand curves as “strong” or “weak” and translate these demand curves to
bidding aggressiveness.

First-price bidding equilibria satisfy two important properties that are
not typically satisfied in multi-unit auctions: they are unique, and they are
separating in the sense that values can be inferred from bids. Both prop-
erties are valuable for empirical or computational work. It is immediate
that the two-bidder equilibrium we identify is separating. Using techniques
from the first-price auction literature we prove that it is unique in the space
of separating strategies. With more than two bidders, equilibrium strate-
gies in the last-accepted-bid uniform-price auction can no longer be directly
identified with a corresponding first-price equilibrium, but we show that the
properties of uniqueness and separation continue to hold with more than
two bidders.

We compare the last-accepted-bid auction to the commonly-analyzed
first-rejected-bid uniform-price and the pay-as-bid rules. We extend known
inefficiency results in both the first rejected bid and pay-as-bid auctions
(see, e.g., Ausubel et al. [2014]) to our model of bidder values. This pro-
vides a clear contrast with the unique equilibrium in the last accepted bid
auction with symmetric distributions: this equilibrium is always efficient,
while neither the first-rejected-bid nor the pay-as-bid auctions are efficient.
We expose a connection between this inefficiency and the tractability prob-
lems which are known to complicate the first-rejected-bid and pay-as-bid
auctions. In these two auctions, we show that information is pooled in all
well-behaved equilibria. It is therefore impossible to achieve efficiency, and
solving analytically for equilibrium involves the determination of pooled in-
tervals, which imply regions over which the first-order conditions cannot be

4Historically, the literature on multi-unit auctions assumed (without analysis) they
were strategically analogous to single-unit auctions; see, e.g., Friedman [1991]. Our results
should not be mistaken for a return to this view. As stated above, our results suggest a
strategic connection between single-unit first-price auctions and multi-unit last accepted
bid auctions.
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näıvely applied.5 This provides a clear contrast with the tractable unique
equilibrium we find in the last-accepted-bid auction. Last, we show that
the low-revenue (collusive-seeming) equilibria which are known to plague
the first-rejected-bid auction cannot be supported in the last-accepted-bid
auction. These points together provide straightforward justification for em-
ploying the last-accepted-bid pricing rule.

Equilibrium strategies depend critically on the clearing price charged
by the seller. Although it may be true that for a fixed set of strategies
the bidders’ payoffs are not affected much by choosing the last accepted
bid or the first rejected bid as the clearing price, our results show that
the choice of clearing price does have a significant effect on equilibrium
strategies. The underlying reason is that the equilibrium bids are determined
by conditioning on the low probability event that that particular bid is
selected as the clearing price, and focusing on these events, our analysis
makes clear that whether the clearing price is the last accepted bid or the
first rejected bid has significant implications for how the bid is chosen.6

Since our model accommodates any number of units, the equilibrium in our
model provides a natural equilibrium selection in the divisible goods case,
where the equilibrium need not be unique.

Pedagogically, these results suggest the care be paid to the selection
of salient features of equilibrium in auction models. For example, bidders
report truthfully in the canonical equilibrium of a second-price single-unit
auction; it is known that the optimality of truthful reporting does not extend
to multi-unit first-rejected bid pricing (see above, and also Back and Zen-
der [1993], Engelbrecht-Wiggans and Kahn [1998], Wang and Zender [2002],
and Ausubel et al. [2014] among many others).7 It is also known that the
intuitive behavior in a single-unit first-price auction does not translate to
multi-unit discriminatory auctions, in spite of bidders paying their bids in

5In the first-rejected-bid auction, pooling arises for relatively low valuations for which
the marginal gain associated with an increase in winning probability is outweighed by
the increased probability of setting the market price. In the pay-as-bid auction, pooling
arises due to the constraint that bids be weakly decreasing while agents would sometimes
prefer to submit nonmonotone (or even weakly increasing) bid functions. The incentives
underlying pooling behavior are distinct in these two auctions, but they imply similar
issues for tractability.

6This distinction is relevant until the number of units becomes so large that the envi-
ronment approaches a divisible good model in which the distinction between last accepted
and first rejected is (typically) inconsequential.

7In particular, the optimality of truthful reporting in a second-price single-unit auction
derives from its equivalence to a Vickrey auction. With multiple units this equivalence
evaporates.
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both settings (see, e.g., Woodward [2016]). Our results show strategic equiv-
alence between single-unit first-price auctions and multi-unit last-accepted-
bid auctions, suggesting that the strategically salient feature of these auc-
tions is the selection of the highest market-clearing price. To our knowledge
this has gone unaddressed in the literature.

The remainder of the paper is organized as follows. In Section 2, we
analyze an example with two bidders and two goods to preview the main
results. Section 3 introduces the general model. In Section 4, we characterize
equilibrium in the last-accepted-bid uniform-price auction, and in Section 5
we present results on the separability and uniqueness of these equilibria.
Section 6 provides contrasting results for the first-rejected-bid uniform-price
auction and the pay-as-bid auction, while Section 7 concludes.

2 Leading Example: 2 Bidders and 2 Goods

We begin with a simple example of our model. There are two bidders, each
with demand for (up to) two units. An auctioneer is selling two units in a
multi-unit auction: he solicits weakly decreasing demands for each unit from
each of the bidders, and awards the two units to the agent(s) submitting the
two highest bids.

Bidders have independent private values: bidder i’s value for her kth unit
is vik. For each bidder, vi is determined by ordering two independent draws
from a U(0, 1); in particular, vik is (marginally) distributed according the
kth order statistic of a uniform distribution on [0, 1], vik ∼ U(k)(0, 1). Denote
the inverse bid functions mapping bids to values by ϕi

k.8

Denote the marginal distribution of vik by F(k). Because values are dis-
tributed as order statistics,

F(1) (x) = x2,

F(2) (x) = 2x− x2.

We consider two payment rules. In last accepted bid (LAB), bidders pay
the second-highest bid submitted for each unit they receive. In first rejected
bid (FRB), bidders pay the third-highest bid submitted for each unit they

8In this analysis we elide some technical details and focus on well-behaved strategies;
in particular, bids are strictly increasing in value and are thus invertible, and tiebreaking
is a probability-zero event, so there is no concern about allocations when bidders submit
the same bid.
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receive.9 We defer the discussion of pay-as-bid auctions, in which bidders
pay their submitted bid for each unit they receive, until later in the paper.

Several statistical events are of importance in the pricing rules we in-
vestigate. Derivations of the associated probabilites may be found in the
Appendix.

2.1 Last Accepted Bid

In LAB, three statistical events are salient. First, bidder i can win 2 units;
this occurs when bi2 ≥ b

−i
1 . Second, bidder i can win 1 unit while bidder −i

sets the price; this occurs when bi1 ≥ b−i1 > bi2. Third, bidder i can win 1
unit and set the price; this occurs when b−i1 > bi1 ≥ b

−i
2 .10

With these events, interim utility in LAB can be expressed as

ui
(
bi; vi

)
=
(
vi1 + vi2 − 2bi2

)
Pr
(
bi2 ≥ b−i1

)
+
(
vi1 − E

[
b−i1

∣∣ bi1 ≥ b−i1 > bi2
])

Pr
(
bi1 ≥ b−i1 > bi2

)
+
(
vi1 − bi1

)
Pr
(
b−i1 > bi1 ≥ b−i2

)
.

As we show in Appendix A, in a symmetric equilibrium the agents’ first-
order conditions are given by

2 (ϕ1 (b)− b) (1− ϕ2 (b)) dϕ2 (b)−
(

2ϕ2 (b)− ϕ2 (b)2 − ϕ1 (b)2
)

= 0; (unit 1)

(ϕ2 (b)− b)ϕ1 (b) dϕ1 (b)− ϕ1 (b)2 = 0. (unit 2)

These equations imply that in equilibrium,

ϕ1 (b) = ϕ2 (b) = 2b,

b1 (v) = b2 (v) =
1

2
v.

That is, equilibrium in LAB is exactly equilibrium in a standard first-price
auction for a single unit. It is immediate to verify that this equilibrium is
efficient.

9As we will discuss later, LAB and FRB correspond to the highest and lowest (respec-
tively) market-clearing prices in a Walrasian market with inelastic supply and demands
given by the submitted bids.

10There is also a fourth relevant event, that bidder i wins zero units. Because this yields
0 utility, it is of no consequence to the formal analysis.
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2.2 First Rejected Bid

In FRB, three statistical events are salient. First, bidder i can win 2 units;
this occurs when bi2 ≥ b

−i
1 . Second, bidder i can win 1 unit and set the price;

this occurs when b−i1 > bi2 ≥ b
−i
2 . Third, bidder i can win 1 unit while bidder

−i sets the price; this occurs when bi1 ≥ b
−i
2 ≥ bi2.

With these events, interim utility in FRB can be expressed as

ui
(
bi; vi

)
=
(
vi1 + vi2 − 2E

[
b−i1

∣∣ bi2 ≥ b−i1

])
Pr
(
bi2 ≥ b−i1

)
+
(
vi1 − bi2

)
Pr
(
b−i1 > bi2 ≥ b−i2

)
+
(
vi1 − E

[
b−i2

∣∣ bi1 ≥ b−i2 > bi2
])

Pr
(
bi1 ≥ b−i2 > bi2

)
.

As we show in Appendix A, in a symmetric equilibrium the agents’ first-
order conditions are given by

(ϕ1 (b)− b) (2− 2ϕ2 (b)) dϕ2 (b) = 0; (unit 1)

2 (ϕ2 (b)− b)ϕ1 (b) dϕ1 (b)−
(

2ϕ2 (b)− ϕ2 (b)2 − ϕ1 (b)2
)

= 0. (unit 2)

The first-order condition with respect to the bid for the first unit, bi1, con-
firms the intuiton that truthful reporting is a weakly dominant strategy.
This follows from standard second-price auction logic: the bid for the first
unit is never the clearing price (when the agent wins) so it is effectively
costless to increase the bid.11

In an equilibrium in which agents bid truthfully for their initial units
the first-order condition with respect to the second-unit bid is no longer
(meaningfully) a differential equation: ϕ1(b) = b, and hence dϕ1(b) = 1.
Subtituting through, symmetric equilibirum bids for the second unit must
solve

2 (v2 − b) b−
(
2v2 − v2

2 − b2
)

= 0.

This is a negative quadratic in b, with a solution of

b = v2 ±
√

2v2
2 − 2v2.

Since v2 ∈ [0, 1], it must be that 2v2
2 − 2v2 ≤ 0 (and this inequality is strict

when v2 /∈ {0, 1}); then the negative quadratic has no real zeroes, and the
first-order condition with respect to b2 is negative everywhere. It follows
that b2 = 0 indentically, independent of v2.

11Our technical results show that information confounding in equilibrium is independent
of whether first-unit bids are truthful; it follows immediately that FRB equilibria are never
efficient. We conjecture that revenue-dominance of LAB over FRB holds across all FRB
equilibria, but we do not formally demonstrate this result.
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2.3 Comparison

Because bids in the LAB auction are independent of the unit for which they
are submitted—that is, because bik(v) = vk/2 for both units—outcomes
are efficient. This contrasts strongly with the results of the FRB auction.
Because second-unit bids are always zero, inefficient outcomes will arise
whenever one agent’s value for her first unit is below the other agent’s value
for her second unit (in this example, this probability is 1/3).

Due to the linearity of bids in the LAB auction, expected revenues may
be simply computed as half of the expected second-highest draw from four
draws of a uniform distribution. Aggregate expected revenue is then 3/5,
and per-unit expected revenue is 3/10. This again contrasts strongly with
the expected revenue of the FRB auction. Because second-unit bids are
always zero, the clearing price is always zero. Then aggregate and per-unit
expected revenues are zero.

In the remainder of this paper we demonstrate that certain of these
properties generalize. When market demand satisfies a simple algebraic
condition (“market balance”) there is an equilibrium of the LAB auction in
which bids are independent of the unit for which they are submitted, im-
plying efficiency. We prove generally that there is a unique well-behaved12

equilibrium in the LAB auction, establishing efficiency of a natural outcome
of the auction. Contrariwise, we demonstrate that there is always informa-
tion confounding and some degree of pooling in the FRB auction, thus all
outcomes of the FRB auction are inefficient. We also demonstrate that the
FRB auction always admits an equilibrium with expected revenue given by
the reserve price (times the quantity sold), while the LAB auction admits
no such equilibrium.

3 Model

An auctioneer sells m units of a homogeneous good to n risk-neutral bidders
who, with probability 1, have strictly positive aggregate demand for at least
m units. Bidder i values units according to the ordered realizations of mi

independent draws from the absolutely continuous distribution F i : [0, 1]→
[0, 1] with density f i. The ordering ensures that marginal values are weakly
declining for every realization. For example, the bidder’s marginal value for
the first unit is the first order statistic of mi independent draws from F i.
When bidders are “symmetric”, F i = F for all i and some F . We denote

12The proper notion of well-behavedness is defined later.
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the ordered vector of bidder i’s valuations by vi, so that vik is her value for
her kth unit. By definition, vi1 ≥ · · · ≥ vimi

. For simplicity we sometimes
reference the “n×m case”, in which n symmetric agents each have demand
for m units, and m units are available in the auction. When m =

∑
j 6=imj

for any bidder i, we say that the market is balanced.
We consider sealed-bid auctions, where bidders submit weakly decreas-

ing demand vectors to the auctioneer. Bidder i submits a weakly-positive
demand vector bi, so that bik is her bid for her kth unit. Where helpful,
we will take a mechanism design approach and consider bids as functions
of bidders’ private values, bik ≡ bik(vi). Without a reserve price, the auc-
tioneer allocates the available units to the m highest bids.13,14,15 Denote
the maximum and minimum market-clearing prices by p and p, respectively,
where

p = min
{
p : #

{
(i, k) : bik ≥ p

}
≤ m

}
,

p = max
{
p : #

{
(i, k) : bik ≥ p

}
≥ m

}
.

Each bidder is risk-neutral and her utility is quasilinear in payments.
Conditional on allocation qi and payment ti, bidder i’s ex post utility is

ui
(
qi, ti; v

i
)

=

[
qi∑

k=1

vik

]
− ti

We focus most of our attention on the last accepted bid (LAB) uniform-
pricing rule, in which each bidder pays the same price for each unit she
obtains, and this price is equal to the mth highest bid; this is equivalent
to clearing the market at p, the highest market-clearing price, ti(qi) = pqi.
For mechanism comparisons, we also discuss the first rejected bid (FRB)
uniform-pricing rule, where the per-unit price is the (m + 1)th highest bid

13Bid monotonicity is a constraint typically observed in practice. However, under the
assumption that the auctioneer accepts bids in decreasing order bid monotonicity is also
a simplifying assumption that can be made without loss of generality.

14Where the mth highest bid is not well-defined some form of tiebreaking or rationing
is necessary. Because the tiebreaking rule is not of importance to our analysis, we leave
it unspecified. This point has been noted in the multi-unit and divisible-good auction
literature; see, e.g., Häfner [2015].

15When a nontrivial reserve price is present, bids are accepted in decreasing order until
either all m units are allocated or there are no remaining bids weakly above the reserve
price. For the most part our results are not meaningfully affected by the presence or
absence of a reserve price (in light of what is known of behavior in single-unit auctions with
reserve prices), so it is natural to ignore reserve price to avoid unnecessary technicalities.
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p p

q

b

Figure 1: Maximum and minimum market-clearing prices displayed on an
aggregate demand curve, D(q) = inf{p : #{(i, k) : bik ≥ p} < q, when m = 7
units are available.

(equivalent to the lowest market-clearing price), ti(qi) = pqi, and the pay-
as-bid (PAB) pricing rule, in which for each unit a bidder receives she pays
her bid for this specific unit, ti(qi) =

∑qi
k=1 b

i
k.

Market clearing implies that bidder i receives unit k if and only if her
opponents receive (in aggregate) less than m− k+ 1 units.16 It is helpful to
consider bidder i competing for her kth unit against the aggregate demand of
her opponents for m−k+1 units. Let H i

m−k+1 be the marginal distribution

of her opponents’ m− k+ 1th highest bid, and let him−k+1 be the associated
density (where well-defined).

3.1 Matching Demand Curves

There is a natural interpretation of our “order statistics” model in terms of
bidders’ mean demand curves in the following sense. Fixing a uniform price
p, the expected number of units demanded by bidder i is (1 − F i(p))mi.

17

The specification of the mean demand curve is therefore flexible because
F i is arbitrary, while the distribution of demand curves about the mean is
determined by the properties of the order statistic model.18

16With a reserve price the “only if” is still valid, but the “if” may fail. Nonetheless the
competition faced for unit k is against opponents’ aggregate demand for m− k + 1 units.

17For a fixed price, the number of units demanded out of a maximum of m is a random
variable with a binomial distribution with probability of “success” given by 1 − F i(p).

18For example, the observations in Footnote 17 imply that the variance of the number
of units demanded at price p must be F i(p)(1−F i(p))mi, or large for intermediate prices
and small for prices near 0 or 1.
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4 Equilibrium of Last Accepted Bid

We first derive equilibrium bidding strategies in the last-accepted-bid auc-
tion with symmetric demands when the balanced market condition holds,
and show that they have closed form representations.

4.1 Symmetric Bidders in a Balanced Market

Recall that a balanced market is one where m =
∑

j 6=imj . This implies that
each bidder faces exactly m bids from opponents in equilibrium. The case
where two bidders each demand m units is one such example.

Symmetric means that each bidder’s kth unit is distributed according to
the kth order statistic from the same distribution F (i.e., vik ∼ F(k) for each

i). We use Y(k) to denote a random variable that is the kth order statistic
from m independent draws from F . Building on the example in Section 2,
suppose that each opposing bidder shades her bid consistently for every unit
in the sense that there is some increasing b(·) such that for all agents j and
all units k, bjk = b(vjk). Let ϕ(b) be the inverse of b(v).19 The distribution
of the opponent’s kth bid is therefore F(k)(ϕ(b)).

If bidder i places the bid bik = b(vik) on her kth unit, under the last
accepted bid rule, bidder i wins exactly k units and pays b(Y(m−k)) if and
only if vik ≥ Y(m−k) ≥ vik+1. On the other hand, bidder i wins k units and
pays b(vik) if and only if Y(m−k) ≥ vik ≥ Y(m−k+1). If k > 1, bidder i’s bid

on the kth unit also affects the probability of winning exactly k − 1 units
when the realization of values is such that vik−1 ≥ Y(m−k−1) ≥ vik. These

three events account for all the ways in which the bid on the kth unit affects
bidder i’s payoff. To derive a necessary condition for b to be an equilibrium
consider a bid b(v′) ∈ (b(vik−1), b(vik+1)) and the associated contribution to
bidder i’s payoff.

uik
(
b; vi

)
=

∫ v′

vik+1

(
k∑

`=1

vi` − kb (x)

)
f (m−k) (x) dx

+

(
k∑

`=1

vi` − kb
(
v′
))

(F(m−k+1)

(
v′
)
− F(m−k)

(
v′
)
)

+

∫ vik−1

v′

(
k−1∑
`=1

vi` − (k − 1) b (x)

)
f(m−k−1) (x) dx

19We show later that this inverse exists.
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The derivative of this expression with respect to v′ evaluated at vik is(
vik − b

(
vik
))
f(m−k+1)

(
vik
)
− kb′

(
vik
) (
F (m−k+1)

(
vik
)
− F (m−k)

(
vik
))

=

(
m

m− k

)
k
(
1− F

(
vik
))m−k

F
(
vik
)k−1 [

f
(
vik
) (
vik − b

(
vik
))
− b′

(
vik
)
F
(
vik
)]
.

(1)

One can check that the familiar solution to the symmetric first-price auction
for a single unit, b(v) = 1

F (v)

∫ v
0 xf(x) dx makes this expression zero, and this

is in fact the equilibrium mapping from marginal values to bids.

Proposition 1. If marginal values for each bidder are the order statistics
from independent draws from F the equilibrium bids for bidder i in the last-
accepted-bid auction are

bi(vi) =

(
1

F (vik)

∫ vik

0
xf(x) dx

)
k∈{1,..,mi}

.

Proof. From the discussion preceding the proof, it is clear that the candi-
date equilibrium bid, b(vik), satisfies the kth first-order condition. Standard
arguments establish that the partial derivative is negative (positive) for b(v′)
when v′ > vik (v′ < vik), which also means that the objective must be lower
at the end points, b(vik−1) and b(vik+1), given by the monotonicity constraint.
Furthermore observe that all cross-partial derivatives are zero, from which
it follows that the second-order conditions are satisfied.

For k = 1, . . . ,m, the relevant components of the objective are respec-
tively∫ v′

vi2

(
vi1 − b (x)

)
f(m−1) (x) dx+

(
vi1 − b

(
v′
)) (

F(m)

(
v′
)
− F(m−1)

(
v′
))

and m∑
j=1

vij −mb
(
v′
)F(1)

(
v′
)

+

∫ vim−1

v′

m−1∑
j=1

vij − (m− 1) b (x)

 f(1) (x) dx.

Similar arguments establish the optimality of setting bi1 = b(vi1) and bim =
b(vim).

This equilibrium is efficient, and hence standard arguments imply that
the expected payment should be equal to the Vickrey payment. To see
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this, consider the event that b(vik) is the last accepted bid (i.e., Y(m−k) ≥
vik ≥ Y(m−k+1)). In this event the bidder pays kb(vik), which is the expected
payment made for k units in a Vickrey auction conditional on this event
because

k∑
j=1

E
[
Y(m−k+j)

∣∣Y(m−k) ≥ vik ≥ Y(m−k+1)

]
=

k∑
j=1

E
[
Y(j:k)

∣∣ vik ≥ Y(1:k)

]
= kE

[
Y |vik ≥ Y

]
= kb(vik), (2)

where the notation Y(j:k) denotes the jth highest value out of k independent
draws from F . To understand the first equality, observe that conditional
on the event Y(m−k) > vik > Y(m−k+1) the first m − k random variables
provide no additional information about the last k random variables, so
the expectation reduces to one involving just the last k. Recall that in
the Vickrey auction a bidder who wins k units in this environment would
be required to pay the sum of the k rejected bids made by the opponents.
In other words, the bids in this equilibrium are set so that the expected
payment equals the expected Vickrey auction payment conditional on the
event that the bid determines the payment.

4.2 The Asymmetric 2×m Case

When marginal values for two bidders, who each demand all m units, are
drawn from different distributions, the equilibrium will in general no longer
be efficient or have closed-form expressions, as is the case in asymmetric first-
price auctions for a single good. However, given that first-order conditions
in this auction take forms very similar to that of the first-price auction for
a single good, many of our earlier results carry over.

Most of the literature on asymmetric first-price auctions focuses on the
two-bidder case. An analogous case in this model is set up as follows.
Suppose that there are two bidders, i = 1, 2, who each value marginal
units according to m draws each from F i, where F 1 6= F 2. Suppose that
i’s bids for each marginal unit are determined by the increasing, differen-
tiable function bi(vik) with inverse ϕi(b). Then the event that i’s bid on
the kth unit, bik, is selected as the last accepted bid occurs if and only if
Y(m−k) ≥ ϕ−i(bik) ≥ Y(m−k+1). Accounting for the other two events influ-
enced by the choice of bik (see Section 4.1), the first-order condition associ-
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ated with bik if bik ∈ (bik+1, b
i
k−1) is(

m

m− k

)
k(1− F−i(ϕ−i(bik)))

m−k
F−i(ϕ−i(bik))

k−1×{
ϕj′(bik)f−i(ϕ−i(bik))(vik − bik)− F−i(ϕ−i(bik))

}
= 0 (3)

which reduces to the expression studied in Maskin and Riley [2000]. Suppose
b1(v) and b2(v) are the equilibrium bid functions from the first-price auction
involving two bidders with corresponding value distributions F 1 and F 2,
then it is immediate that setting bik = bi(vik) will satisfy bidder i’s first-order
condition for good k when bi(vi) =

(
bi(vik)

)
k∈{1,...,m}.

Proposition 2. With two bidders whose m marginal values are the or-
der statistics from F 1 and F 2, if b1(v) and b2(v) are the equilibrium bid
functions in the first-price auction for a single unit with two bidders whose
values are distributed according to F 1 and F 2, then the strategies bi(vi) =(
bi(vik)

)
k∈{1,..,m} constitute an equilibrium of the last-accepted-bid auction.

Proof. Analogous to the proof of Proposition 1.

Given the relation between equilibrium bidding in the last-accepted-bid
model and bidding in asymmetric first-price auctions, a number of results
follow immediately. Instead of exhaustively listing them here, we emphasize
their interpretation in this model. Recall that we may interpret the function
(1−F i(p))m as bidder i’s mean demand curve. It follows from the previous
section, that (1 − F i(ϕi(b)))m represents the mean number of bids placed
by bidder i that exceed b in equilibrium, referred to as the mean quantity
demanded in equilibrium. Bidder −i’s mean residual supply curve is there-
fore F i(ϕi(b))m, which is proportional to the equilibrium bid distribution
of a bidder with type distribution F i in a first-price auction.

The stochastic dominance properties used in the asymmetric first-price
auction literature have immediate analogues to properties of the mean de-
mand curves in this model. For example, bidder i having weakly higher
mean demand than bidder −i at each price is equivalent to F i first-order
stochastically dominating F−i. An implication from the first-price auction
literature is that bidder i’s mean quantity demanded weakly exceeds bidder
−i’s in equilibrium [Kirkegaard, 2009, Corollary 1]. The stronger distribu-
tional ordering property of reverse hazard rate dominance can be stated as
follows.

Definition 1 (Reverse Hazard Rate Dominance).

F �rh G ⇐⇒
d

dx

F (x)

G(x)
≥ 0, ∀x.
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When F andG admit densities at x, this implies f(x)/F (x) ≥ g(x)/G(x).
If F i(x)m is the mean residual supply curve that bidder i would present to
bidder −i if she were to bid her value for each unit, then xf i(x)/F i(x) is
the elasticity of that supply curve. The reverse hazard rate condition can
then be interpreted as requiring that these elasticities are ordered. From
Proposition 3.5 of Maskin and Riley [2000] we can therefore conclude that
this ordering of elasticities is sufficient to order the bid curves of the bidders,
meaning F i � F−i implies bi(v) < b−i(v) or bi(v) < b−i(v). This is the
well-known “weakness leads to aggression” result.

Finally, we make one more connection to work on investment incentives
in single unit auctions. In their Proposition 3 Arozamena and Cantillon
[2004] show that if one bidder is given the opportunity to “upgrade” their
type distribution ex ante by making it stronger with respect to hazard-
rate dominance, the investment incentives are stronger in the second-price
auction than in the first-price auction. Furthermore, their Proposition 4
shows that investment incentives are optimal in the second-price auction.
Upgrading the distribution has a natural interpretation in our model. It
is equivalent to a bidder in our model investing to increase her mean de-
mand curve in such a way as to weakly increase the elasticity of the mean
residual supply curve at every point. From the Arozamena and Cantillon
[2004] results we get immediate comparisons of the investment incentives in
the last-accepted-bid uniform-price auction to those in the Vickrey auction,
which is the extension of the second-price auction to this environment.

4.3 The General Case

If the market is either balanced and bidders have symmetric demands or
there are two bidders with asymmetric demand for all units, we can identify
equilibrium strategies with a corresponding first-price auction. This is no
longer true in the general case where the market is either unbalanced or
there are more than two asymmetric bidders. A common property of the
equilibria in both of the previous sections is that there exists a univariate
function which bidder i uses to determine the bids on all of his marginal
units from their marginal values. In general this property, which allows
for the reduction to a first-price auction, does not hold in equilibrium, and
bidders may shade their bids on marginal units differently depending on the
unit to which the bid is on.

Despite not being able to pin down equilibrium strategies in the general
case, we show in this section that we can utilize techniques from the first-
price auctions literature to establish that some key properties still hold. For
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example, we present an unbalanced, symmetric demand case in which we can
prove a uniqueness result for equilibrium strategies using an argument that
closely resembles the uniqueness argument typically given for the equilibrium
of a first-price auction.

First, we provide an existence result for the general model.

Proposition 3. With n ≥ 2 bidders i ∈ {1, . . . , n}, where bidder i’s mi

marginal values are the order statistics from the distribution F i, the last-
accepted bid uniform price auction admits a pure-strategy Bayesian Nash
equilibrium.

Proof. This follows from Corollary 5.2 in Reny [2011].20

5 Properties of the LAB Equilibrium

The previous section shows that there is a close connection between the
equilibrium of the first-price auction and that of the LAB auction. In this
section we discuss the properties of these equilibria with a particular focus
on whether the equilibrium is separating and whether it is unique.

We divide the analysis into two cases. In the first, we discuss the case
with two bidders and m units where the bidder i’s demand curve is generated
from m ordered draws from some F i. The second considers the case where
we have n symmetric bidders bidding for two units and each bidder has a
demand curve generated from two ordered draws from a common F .

5.1 Separation in the 2×m Case

A formal definition of what we mean by separating bids is the following.

Definition 2 (Strictly separating bids). A bid function bi is strictly sepa-
rating if the inverse bid correspondence is at most single-valued; that is, for
all type profiles vi,

#
{
v : bi (v) = bi

(
vi
)}

= 1.

In equilibria that are strictly separating bid curves preserve all informa-
tion about the marginal values. In other words, bid curves are invertible
given bid data — a useful property for empirical work. Because the mono-
tonicity constraint on bid curves never binds, the optimization problem can

20Reny [2011] investigates the FRB auction. With regard to existence (although not, as
argued above, the structure of equilibrium) the arguments do not change in a substantive
way.
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be solved bid-by-bid. This reduces the computational complexity of the
bidder’s problem as well as the complexity of computationally solving for
equilibrium.

Observe that in the case with two bidders and m units the equilibria
described in Section 4 satisfy this property, since the event that a bidder
submits two marginal bids that are equal to one another has zero measure.

Corollary 1. Suppose two bidders each with demand for m goods compete
for m goods in a LAB uniform-price auction. There exists an equilibrium
in which bids are strictly separating.

In Section 6 we show that this property is not shared by either the FRB
uniform-price auction or the PAB auction.

5.2 Uniqueness in the 2×m Case

Several authors have investigated the uniqueness of equilibrium bidding
strategies in the first-price auction, notably Maskin and Riley [2003], Bajari
[2001], and Lebrun [2006]. Their arguments for uniqueness are based on
analyses of the system of differential equations in the inverse bid functions
derived from first-order conditions. In our derivation of equilibrium for the
LAB auction, we show that under the assumption that the opponent uses
the same univariate bid function for each marginal unit we recover the same
system of differential equations (e.g., see (3)). It follows that if the bidders
are restricted to using the same bid function for each marginal unit the
existing uniqueness results for the first-price auction apply in our setting.

In this section, we extend this result to show uniqueness over a larger set
of strategies. We show that the equilibrium identified in the previous section
is unique among all separating strategies. More precisely, we show that
whenever the corresponding first-price auction admits a unique equilibrium,
the equilibrium we have identified is unique among separating strategies.

The arguments for uniqueness in the first-price auction given in the lit-
erature typically use the same intermediate arguments.21 First, one shows
that the largest equilibrium bid (or smallest in the case of procurement) is
the same for every bidder. Second, one defines a system of ordinary differen-
tial equations involving inverse bid functions. The equations in the system

21We refer to Lebrun [2006] for a discussion of uniqueness results in the first-price
auction literature and the assumptions required to prove uniqueness. There is a unique
equilibrium in the asymmetric first-price auction under fairly general conditions, but as
argued in Lebrun [2006] some prior proofs have relied on unjustified uses of L’Hôpital’s
rule.
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are shown to be necessary and sufficient for optimality and also to satisfy
the Lipschitz condition at every bid excluding the lowest bid. The initial
value problem starting from a particular highest bid therefore has a unique
solution due to the fundamental theorem of ordinary differential equations.
Third, one shows that if b̄ and b̃ are two initial values with b̄ < b̃ then the
solutions to the initial value problem using b̄ are greater than those to the
problem using b̃ at every interior b. Finally, one shows with an additional
assumption about the problem at the lowest bid that the second and third
results imply that there can only be one highest bid yielding a solution that
is also an equilibrium.

To establish uniqueness of the LAB equilibrium among separating strate-
gies in our model, we follow the first two steps in the prior paragraph but
then appeal to the uniqueness of the corresponding first-price auction solu-
tion to complete the proof. We restrict attention to separating strategies,
because our argument relies on the analysis of a system of differential equa-
tions that is only valid for separating strategies. Allowing the monotonicity
constraint to bind for arbitrary bids leads to a system of equations that is
substantially more difficult to analyze.

The most important step in our argument is to establish that the highest
bid submitted for any unit by any bidder in equilibrium is the same. This
does not follow directly from the analogous argument in the first-price auc-
tion, although there are similarities. The added difficulty here arises from
the facts that there is a monotonicity constraint on bids and that the prob-
ability that a bid on unit k wins depends on the distribution of two of the
opponent’s bids. We show that the highest equilibrium bid is the same for
all units in Lemma 2, after proving an intermediate lemma next.

Lemma 1. Suppose that a type-vi bidder i submits a constant bid bi{k,...,k+a}
for units k, . . . , k + a and let bil(v

i
l) and bis(v

i
s) with l, s ∈ {k, . . . , k + a} be

respectively any of the bidder’s largest and smallest unconstrained bids for
these units. Then bil(v

i
l) > bis(v

i
s) implies bil(v

i
l) > bi{k,...,k+a} > bis(v

i
s).

Proof. The first-order condition for the constrained bid is

k+a∑
j=k

∂

∂bij
U i(bi{k,...,k+a}; v

i) = 0, (4)

or the sum of the unconstrained bid first-order conditions. Note that the
objective is quasi-concave in each bij . At the largest unconstrained bid, bil,
the first-order conditions for the other bids cannot be positive, due to quasi-
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concavity, and given bil(v
i
l) > bis(v

i
s) at least one is negative. Therefore, at

bil, (4) is negative. A similar argument implies that (4) is positive at bis.

Lemma 2. In equilibrium, there is a b such that for all i and k, b
i
k = b.

Proof. First, it cannot be that b
i
k = b

i
for all i and k but b

i 6= b
−i

because
the type of bidder who submits the higher maximum bid could lower all of
his bids and reduce his payment without reducing the probability of winning

any units. Therefore if the lemma is false b
i
k > b

i
k+1 for some k and i. Let

k̂ to be the lowest k for which b
i
k > b

i
k+1.

We claim that b
−i
m−k̂+1 = b

−i
m−k̂ = b

i
k̂. It must be that b

−i
m−`+1 ≤ b

i
`(= b

i
k̂)

for all ` ≤ k̂ because otherwise the type of bidder −i placing these bids could
weakly reduce all of these bids without reducing the probability of winning

any of the items. If b
−i
m−`+1 ≤ b

−i
m−k̂+1 < b

i
k̂ for all ` ≤ k̂, then bidder i

should respond by reducing his maximum bids on the first k̂ units for the

same reason. Hence, b
−i
m−k̂+1 = b

i
k̂. Now b

−i
m−k̂+1 = b

−i
m−k̂ follows because

otherwise b
−i
m−k̂ > max{b−im−k̂+1, b

i
k̂+1} and b

−i
m−k̂ can be reduced without

lowering the probability of winning or violating monotonicity.

Finally, for vm−k̂ close to 1, b−i
m−k̂

(vm−k̂) ≤ b
i
k̂+1 < b

i
k̂ = b

−i
m−k̂+1.

Lemma 1 then implies that the optimal choice of constrained bid for bidder

2 is strictly below b
i
k̂, which is a contradiction.

Having established that there is a common maximum bid for all units and
bidders, we next describe the system of differential equations we evaluate.
As with first-price auctions, the arguments are made simpler by writing the
differential equations in terms of an unknown derivative with respect to a bid
distribution (cf. Lebrun [2006]). Recall that in this section we are assuming
that the bidders use separating strategies. This implies that ϕi

k(b) ≤ ϕi
k+1(b)

for all k and i. Consequently, the distribution of the kth bid of bidder i is
F i
k(ϕi

k(b)). Furthermore, bidder −i’s first-order condition with respect to
his (m− k + 1)th bid becomes

[ϕi
k]′(b)fk(ϕi

k(b))(v−im−k+1−b)−(m−k+1)
(
F i
k(ϕi

k(b))− F i
k−1(ϕi

k−1(b))
)

= 0.

We create a system of 2m differential equations out of the first-order condi-
tions for each bid by each bidder. Instead of writing the system in terms of
unknown inverse bid functions, we write it in terms of unknown bid distri-
butions as follows.
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Definition 3. Let H i
k(b) ≡ F i

k(ϕi
k(b)), H i

0(b) ≡ 0, ϕ−im−k+1 ≡ [F−im−k+1]−1H−im−k+1,

and b ∈ (0, 1) be given. Find (H1
k , H

2
k)k=1,...,m such that for all 1 ≤ k ≤ m,

i ∈ {1, 2}, and b ∈ (0, b]

d

db
H i

k(b) =
m− k + 1

ϕ−im−k+1 − b
(
H i

k(b)−H i
k−1(b)

)
(5)

H i
k(b) = 1

This initial value problem involves a system of 2m equations in 2m un-
known functions, H i

k (b). The next lemma establishes that an equilibrium
of the LAB auction is necessarily a solution to this initial value problem.

Lemma 3. Any equilibrium bid profile in separating strategies must satisfy
(5).

Proof. This is implied by continuity and differentiability of the bid distri-
bution functions. These results are similar to the arguments familiar from
the first-price auction, but we reproduce them here due to the changes in
the agents’ utility functions induced by shifting to a multi-unit model. We
say that unit k is opposed to unit m− k + 1, in the sense that agent i wins
unit k if and only if agent j 6= i wins unit m − k + 1. Recall the separable
utility representation for the LAB auction,

ui (b; v) =
m∑
k=1

vkH
−i
m−k+1 (bk)−

(
H−im−k+1 (bk)−H−im−k (bk)

)
kbk

− k
∫ bk

0
xdH−im−k (x) + (k − 1)

∫ bk

0
xdH−im−k+1 (x) .22

First, there are no gaps in equilibrium bid distribution functions. If
there is a gap in H−im−k+1, then a bid for agent i’s unit k strictly inside
this gap induces no additional winning probability but incurs additional
expected costs (vis a vis bidding the lower bound). It follows that any gaps
in H−im−k+1 are shared by the opposing distribution H i

k. Since there is no
probability gain within the gap, for a bid to be placed at the upper end

22This expression appears to presuppose the differentiability of dH−i
k′ for all k′, how-

ever it is a re-expression of one in terms of well-defined conditional expectations; since
we establish that in equilibrium the bid distributions are continuously differentiable this
expression is ultimately correct. We do not presuppose the correctness of this expression,
and avoid this potential circularity in our formal arguments.
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of the gap there must be a mass point;23 there are therefore identical mass
points for the opposing units k and m− k+ 1. Identical mass points cannot
arise for standard tiebreaking reasons, therefore this is not supportable in
equilibrium.

Second, above the reserve price there are no mass points in equilibrium
bid distributions (i.e., equilibrium bid distributions are continuous). Sup-
pose that there is a mass point in H−im−k+1 at bid b, but no mass point in

H−im−k. Since bids are in general strictly below values24 and there are no gaps

in the bid distributions, there is a value v such that bik(v) = b − ε for any
ε > 0. For ε small enough, a slight increase to b̃ik(v) = b+ ε yields a discrete
jump in expected utility; this implies that gaps exist in response to mass
points, and we have already established that gaps cannot exist. Otherwise,
suppose that there are mass points in both H−im−k+1 and H−im−k at b, so that
the above logic does not apply. However, if this is the case, then there is a
mass point in H−im−k, the unit opposed to bidder i’s unit k + 1. Then the

previous argument holds unless there is also a mass point in H−im−k−1, and so

on. Since there are no mass points in the degenerate distribution H−i0 —the
H−i

m−k̃ corresponding to k̃ = m—the original argument must hold for some

unit, violating the no-gaps property established above.
Lastly, equilibrium bid distributions are differentiable above the reserve

price. Suppose that H−im−k+1 is not differentiable at b while H−im−k is. As
is familiar, this implies the existence of a gap (in the case of an upward
kink) or a mass point (in the case of a downward kink) in the opposing
bid distribution for agent i’s unit k. Since both of these have been ruled
out above, this nondifferentiability is not possible. The case in which both
H−im−k+1 and H−im−k are nondifferentiable at b can be handled similar to the
analysis of mass points above. Then equilibrium bid distributions must be
differentiable.

Since equilibrium bid distributions are continuous and differentiable (above
the reserve price), the first-order conditions must be satisfied in any equi-
librium in separating strategies.

Compare the problem in Definition 3 to the following corresponding one
for the first-price auction.

23This analysis ignores the possibility that the support of the bid distribution above the
gap is left-open. For a bid sufficiently close to this upper endpoint, the arguments are the
same.

24This somewhat obvious point is proved explicitly in a Lemma in an earlier version of
this paper.
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Definition 4. Let H i(b) ≡ F i(ϕi(b)) and b ∈ (0, 1) be given. Find (H1, H2)
such that for all b ∈ (0, b] and i ∈ {1, 2},

d

db
H i(b) =

H i(b)

ϕ−i − b
(6)

H i(b) = 1.

For an arbitrary b, because (6) satisfies the Lipschitz condition for all
b ∈ (0, b], the Fundamental Theorem of Ordinary Differential Equations
(FTODE) implies there is a unique solution to the initial value problem in
Definition 4. Furthermore, when there is a unique equilibrium in the first-
price auction, a single such b yields a solution that also satisfies the boundary
condition H i(b) = F i(ϕi(b)) = 0, where b is the lowest equilibrium bid.

Since the system in (5) also satisfies the Lipschitz condition for all b ∈
(0, b], the FTODE implies that there is a unique solution to the problem in
Definition 3 given a b. But these two solutions must coincide in the sense
that if (ϕ1, ϕ2) is a solution to the first-price auction problem by setting
ϕi
k = ϕi for all k and i and examining Equation (3) we find the unique

solution to the initial value problem corresponding to the LAB auction as
well. The final step is to observe that while Proposition 2 gives us that the
equilibrium value of b generates equilibrium solutions to both problems a
different b would generate a solution that is not an equilibrium of the first-
price auction (by uniqueness) and cannot be an equilibrium of the LAB
auction.

Proposition 4. Consider the last-accepted-bid auction between two bidders
whose m marginal values are the order statistics from F 1 and F 2 and the
corresponding first-price auction involving two bidders with value distribu-
tions F 1 and F 2. If the equilibrium in the first-price auction is unique, then
there is one equilibrium of the last-accepted-bid auction in which the bidders
use separating strategies (i.e., ones in which the monotonicity constraint
binds with probability zero).

5.3 Separation in the n× 2 Case

We turn next to the case with n symmetric bidders for two units. We do
not have an explicit equilibrium characterization here, yet, as we show next,
all symmetric equilibria must be separating.

Let G1(b) and G2(b) be the equilibrium distributions of each bidder’s first
and second bid. Define F−1

1 as the inverse of the distribution of the first
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order statistic from F . Define F−1
2 similarly for the second order statistic.

After isolating g1 ≡ G′1 and g2 ≡ G′2, the first-order conditions require that

g1(b) =
2

n

G1(b)

ϕ2(b)− b

g2(b) =
G2(b)−G1(b)

ϕ1(b)− b
− 2(n− 1)

n

G2(b)−G1(b)

ϕ2(b)− b
,

where we have used the shorthand ϕ1(b) = F−1
1 (G1(b)) and ϕ2(b) = F−1

2 (G2(b)).
Note that F−1

1 (G1(b)) and F−1
2 (G2(b)) are simply the values for the first and

second unit associated with a bid of b. Obviously, we must have g2(b) ≥ 0
in equilibrium. This requires that

1

ϕ1(b)− b
≥ 2(n− 1)

n

1

ϕ2(b)− b

which implies ϕ2(b) ≥ ϕ1(b) as long as n ≥ 2 and that this inequality is
strict when n ≥ 3. Note that the monotonicity constraint implies that
G2(b) ≥ G1(b) for all b.

Proposition 5. With n ≥ 2 symmetric bidders for two units, all symmetric
equilibria have separating bids.

Proof. See Appendix C.

The following corollary is useful in the next section.

Corollary 2. When n ≥ 3, and equilibrium bids are monotone in values
b1(1) > b2(1).

Corollary 2 exposes a distinction between the 2-bidder and n-bidder cases
of the LAB auction. With only two bidders, a bid for unit k competes only
against an opponent’s bid for unit m−k; then distributions of bids for these
units should have the same upper bound. With more agents this intuition
fails. When there are only two units, for example, a bid for the second unit
competes only against opponents’ first-unit bids, while a bid for the first
unit competes against opponents’ bids for both the first and second units.
Then it is no longer true that the bid distributions must be equal, only that
the support of second-unit bids is a subset of the support of first-unit bids.
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5.4 Uniqueness in the Symmetric n× 2 Case

In the prior section we show that equilibria in the n × 2 case must involve
separating strategies. We evaluate the uniqueness of a symmetric equilib-
rium in the n × 2 case in this section. Since the 2 × 2 case is covered by
the previous analysis we assume that n ≥ 3. Let b1(v1) and b2(v2) represent
a candidate equilibrium, where b1(v) ≥ b2(v) for all v ∈ (0, 1). Denote the
inverse bid functions by ϕ1 and ϕ2 respectively.

The argument closely resembles the uniqueness argument for the 2×m
case given in Section 5.2, which in turn resembles uniqueness arguments
given for asymmetric first-price auctions. A key difference that arises is that
with more than two bidders it is no longer true that there is a common high
bid for each marginal unit. One important implication of proving that there
is a common high bid for each marginal unit is that the initial conditions for
the system of differential equations derived from the first-order conditions
have a single degree of freedom.

We first show that the initial conditions in the n × 2 case have a single
degree of freedom as well, despite the fact that b1(1) > b2(1) (see Corol-
lary 2). When b1(1) > b2(1), there are two distinct intervals of bids be-
tween which the first-order conditions for the optimal bids change. Bids
b ∈ [0, b2(1)] compete against first- and second-unit bids made by oppo-
nents. Let F1(v) ≡ F (v)2, H1(b) ≡ F1(ϕ1(b)), F2(v) ≡ 2F (v) − F (v)2 and
H2(b) ≡ F2(ϕ2(b)). The first-order conditions for the first- and second-unit
bids in this range simplify to(

h2(b)

H2(b)−H1(b)
+

(n− 2)h1(b)

H1(b)

)
(v1 − b) = 1 (7)

(n− 1)h1(b)

2H1(b)
(v2 − b) = 1 (8)

For bids b ∈ (b2(1), b1(1)], the opposing bids are solely for the first unit
changing the win probabilities for a bidder’s first unit. The corresponding
first-order condition for the first unit is

(n− 2)h1(b)

H1(b)
(v1 − b) = 1 (9)

Since only first-unit bids are submitted in (b2(1), b1(1)] and assuming that
bidders use symmetric strategies, the bid function that solves (9) can be
represented explicitly up to an unknown bid, because it reduces to the ODE
one would get from a symmetric first-price auction with n− 1 total bidders.
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If b1(1) is known, the unique solution to this ODE can be represented as

b1(1)− b1(v1)F (v1)n−2 =

∫ 1

v1

x dF (x)n−2. (10)

To reiterate, this is an explicit characterization of first-unit bids on the in-
terval (b2(1), b1(1)] for a known value of b1(1). We next argue that the value
of b2(1) is pinned down in equilibrium by b1(1). Note that the first-order
condition for the first-unit in (9) is the same as the one in (7) with h2(b) = 0.
We also observe that it must be that h2(b2(1)) = 0 because the density of a
second-order statistic vanishes at the upper bound of its support. The in-
verse bid function associated with the solution in (10) therefore satisfies (7)
in a neighborhood of b2(1). This implies that a necessary condition for the
selection of b2(1) is that it be optimally chosen according to (8) where H1(b)
is the bid distribution determined by the initial choice of b1(1) and (10). In
other words, at b2(1) the values of h1 and H1 are known up to b1(1).

In the uniqueness argument given in Section 5.2, the second step is to
show that given two distinct initial conditions for the ODE derived from two
distinct choices for the common high bid, the corresponding solutions to the
ODE are monotonic in these initial conditions at all points in the interior
of the domain. The same property holds in the n × 2, which we record as
Lemma 4. Similar to before, we view (7) and (8) as an ODE in unknown
H1 and H2 with domain (0, b2(1)] and initial conditions determined by the
value taken by b2(1) and the value of v̄1 ≡ ϕ1(b2(1)), where ϕ1 is determined
at b2(1) by (10). Using (7) and (8) express this ODE as

h2(b) =
H2(b)−H1(b)

ϕ1(b)− b
− 2(n− 2)

n− 1

H2(b)−H1(b)

ϕ2(b)− b
(11)

h1(b) =
2

n− 1

H1(b)

ϕ2(b)− b
, (12)

where ϕk(b) ≡ F−1
k (Hk(b)).

Lemma 4. Let b̂1(1) < b̄1(1) be two initial choices for b1(1) and b̂2(1) <
b̄2(1) be the corresponding choices for b2(1). Let Ĥ1 and Ĥ2 solve (11)
and (12) when the initial condition is Ĥ2(b̂2(1)) = 1 and Ĥ1(b̂2(1)) =
F1(v̂1), and let H̄1 and H̄2 solve (11) and (12) when the initial condition is
H̄2(b̄2(1)) = 1 and H̄1(b̄2(1)) = F1(v̄1). For all b ∈ (0, b̂2(1)), Ĥ1(b) > H̄1(b)
and Ĥ2(b) > H̄2(b).

Proof. Since the equilibrium bid functions are increasing we have Ĥk(b̂2(1)) =
1 > H̄2(b̂2(1)) for k = 1, 2. We show next that this inequality holds for all
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bids in (0, b̂2(1)]. To do this, we rule out that Ĥk crosses H̄k for either
k at any point in the domain. Let b̂ < b2(1) represent the largest bid
at with either Ĥ1 crosses H̄1 or Ĥ2 crosses H̄2. Consider first the case
where Ĥ1(b̂) = H̄1(b̂) and Ĥ2(b̂) > H̄2(b̂). Using (12), this implies that
ĥ1(b̂) < h̄1(b̂), but this implies that H̄1 crosses Ĥ1 from above, a con-
tradiction. Similarly, one can show using (11) that Ĥ1(b̂) > H̄1(b̂) and
Ĥ2(b̂) = H̄2(b̂) implies ĥ2(b̂) < h̄2(b̂). If it were true that Ĥ1(b̂) = H̄1(b̂)
and Ĥ2(b̂) = H̄2(b̂) (i.e., they both crossed together), then we would have
to conclude by the FTODE that b̂2(1) = b̄2(1), because the FTODE implies
that there is a unique solution to the system in (11) and (12) beginning from
an initial value at a b̂ ∈ (0, b̂2(1)].

Lemma 4 implies that any two solutions to (11) and (12) are ordered
pointwise in the interior of the domain according to the ordering of the high
bids on the first unit. The final step in the uniqueness proof is to use this
fact to rule out that there can be more than one valid choice of b1(1).

In the literature on uniqueness in first-price auctions, an additional as-
sumption is required to complete this final step. This may be an assumption
that L’Hopital’s rule can be applied to the ODE at the low bid;25 an assump-
tion that there is a binding reserve price or an atom at the lower end of the
support of values [Lebrun, 1999, Maskin and Riley, 2003]; or an assumption
about the properties of the value distribution in an interval including the
lower bound of the support [Lebrun, 2006]. Each of these approaches apply
here as well, using the implications of Lemma 4 and the equation in (12).

The equation in (12) implies that for two bids, b < b′,

H1(b′)

H1(b)
= exp

{
2

n− 1

∫ b′

b

dx

ϕ2(x)− x

}
. (13)

As in Lemma 4, let b̂2(1) < b̄2(1) so that Ĥ1(b) > H̄1(b) and Ĥ2(b) > H̄2(b)
for all b ∈ (0, b̂2(1)). From (13) and Lemma 4, it follows that

1 <
Ĥ1(b′)

H̄1(b′)
<
Ĥ1(b)

H̄1(b)
. (14)

With an atom at the bottom of the distribution F equal to c it must be
in equilibrium that H1(0) = c2, implying that if Ĥ1 and H̄1 both derive
from equilibrium strategies Ĥ1(0)/H̄1(0) = 1. But this requirement conflicts
with (14) which bounds this ratio away from one for all b < b′. We conclude
that Ĥ1 and H̄1 cannot both derive from equilibrium strategies.

25Lebrun [2006] points out that this assumption is implicit in Bajari [2001].
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Proposition 6. In the last-accepted-bid auction with n symmetric bidders
each with demand for the two available goods determined by two independent
draws from the distribution F where F (0) > 0, there is a unique symmetric
equilibrium with differentiable bid functions satisfying (11) and (12).

The restriction in Proposition 6 to choices of F with an atom at the
lower endpoint can be replaced with other another assumption such as an
assumption on the validity of using L’Hopital’s rule at the lower endpoint
as in Bajari [2001]. However, the discussion in Lebrun [2006] suggests that
some additional assumption about the bidding behavior at the lower end-
point is needed to prove uniqueness in the first-price auction. Given the
close relation of our model to the first-price uniqueness problem, we do not
believe that we can prove uniqueness without an additional assumption. We
use an atom at the bottom of F , which may arise from the use of a reserve
price and may be arbitrarily small, because it yields the simplest unique-
ness argument while still showing a close connection with the corresponding
first-price problem.

6 Properties of Other Auction Equilibria

In this section, we contrast the properties of the LAB section discussed in the
previous sections with those of two other common multi-unit pricing rules,
the pay-as-bid (PAB) auction and the first-rejected-bid (FRB) uniform-price
auction. Specifically, we focus on issues surrounding separation and unique-
ness of equilibrium.

All of the auctions we analyze have a structure in which bids for dif-
ferent units are co-determined only when the monotonicity constraint (that
bids must be weakly decreasing in quantity) is binding.26 We capture this
structure with the notion of separable incentives.

Definition 5 (Separable incentives). An auction model has separable in-
centives if there are functions ((uik)mi

k=1)ni=1 such that for each agent i, each
unit k, and all bid profiles (bi, b−i) and value profiles v,

ui
(
bi, b−i; v

)
=

mi∑
k=1

uik
(
bik, b

−i; vk
)
.

26Separately, these models exhibit the standard IPV mechanism design monotonicity-in-
value. Because this is a result and not a constraint, when we refer to binding monotonicity
constraints we are referring to monotonicity in quantity.

27



When quantity-monotonicity constraints are not binding, a model with
separable incentives can be analyzed dimension-by-dimension as a set of
m independent optimization problems. In light of Lemma 5 this features
prominently in our analysis of the revelation properties of the FRB and
PAB auction formats.

Lemma 5 (Separability of multi-unit auctions). The FRB, LAB, and PAB
auctions each have separable incentives. In each of these auctions, each
dimensional utility function uik satisfies increasing differences in (bk, vk).

Lemma 5 is proved in Appendix B. If the quantity-monotonicity con-
straint does not bind, in models with separable incentives the bid for any
unit is determined solely by the value for this unit and the opponent’s bid-
ding strategy. Thus in a separating equilibrium, separable incentives imply
that the agent’s optimization problem is well-behaved and independent of
any constraints.

Definition 6 (Partial pooling). A bid function bi exhibits partial pooling if
the inverse bid correspondence is multi-valued with positive probability; that
is,

Pr
(
v ∈

{
v′ : #ϕi

(
bi
(
v′
))
> 1
})

> 0.

There is a wedge between strict separation (Definition 2) and partial
pooling: inverse bids might be multi-valued with zero probability. We are
concerned with issues of information confounding, and in particular in situ-
ations in which information is obfuscated in equilibrium. If equilibrium bids
are non-separating with probability zero, equilibrium is essentially separat-
ing, and this distinction is not meaningful.

Our definition of partial pooling is structured to capture two separate
pooling effects. In the FRB auction, truthful bidding for the first unit is
a weakly dominant strategy. However, we show that there is a range of
last-unit valuations such that a bid of zero strictly dominates all others; this
occurs because residual competition comes from opponents’ low units, for
which distributions are relatively strong. Increasing the bid for the final
unit has little marginal effect on the probability of winning the unit but a
comparatively strong marginal effect on the expected cost paid for all mi−1
units, conditional on their being won. In an equilibrium with truthful bids
for the first unit, the probability of witnessing any particular bid profile is
zero even though the probability of witnessing a zero bid for an agent’s final
unit is strictly positive; partial pooling captures this positive-probability
noninvertibility.
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Partial pooling also captures the information confounding we observe
in the PAB auction. In PAB, the bidder is facing increasingly aggressive
competition as she considers her bid for higher units: her bid for higher
units is against her opponents’ bids for lower units. We show that there
is generally an incentive for the idealized bid for the first unit to be below
the idealized bid for the second unit, violating the bid monotonicity con-
straint. This implies that, for certain value profiles, bids will be flat for
small quantities. Continuity of utility in value implies that this same flat
will be realized for nearby value profiles—if, for example, the value for the
first unit falls while the value for the second unit rises (or vice versa)—and
thus upon witnessing a particular flat bid the bidder’s value profile cannot
be perfectly inverted. Again, this happens in spite of no bid being submitted
with positive probability.

Aside from implications for tractability, information revelation is directly
related to efficiency. An efficient mechanism must allocate units to the
agents with the highest values. When information is confounded, this is not
possible: efficiency entails knowing which agents have the highest values for
the m available units, and standard identification arguments imply that if
this is possible, bids must be separating. We thus contrast the FRB and
PAB auctions, in which all equilibria exhibit partial pooling and are thus
inefficient, with the LAB auction, which we have shown to admit a separable
and efficient equilibrium without pooling.

Remark 1. Any pure-strategy equilibrium can be transformed into a mono-
tone pure-strategy equilibrium without affecting agents’ incentives or payoffs.
We therefore restrict attention to equilibria in monotone pure strategies.

Lemma 6 (Separable bids in separating equilibrium). In a monotone strictly
separating equilibrium the LAB, FRB, and PAB auction models, bidder i’s
equilibrium bid function can be written as

bi (v) =
(
bi1 (v1) , . . . , bimi

(vmi)
)
.

Corollary 3 (No mass points in separating equilibrium). In a monotone
strictly separating equilibrium, there is no bidder i, unit k, and nondegener-
ate interval (v, v) such that bik|(v,v) is constant.

Taken together, the above results imply that either equilibrium bids can
be anlyzed independently, unit-by-unit, or equilibrium exhibits partial pool-
ing. Following the definition of partial pooling, this implies that when bids
cannot be analyzed independently equilibrium outcomes must be inefficient,
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and information is not fully revealed. Helpfully these results allow us to
analyze the revelation question dimension-by-dimension and, from these di-
mensional analyses, to build contradictions which expose the relevance of
partial pooling.

6.1 Partial Pooling in the First-Rejected-Bid Auction

In the FRB auction bids for large quantities are disproporitionately unprof-
itable. A small increase in bid for a large quantity implies that, when this
bid is supra-marginal, this increase is paid for each unit won. Because a
bidder competes for large quantities against her opponents’ small quanti-
ties, not only is there an outsized cost associated with increasing this bid
but there is also only a relatively small gain. These incentives balance in
favor of a mass point at a bid of zero.

To eliminate pathological cases, we define the notion of a well-behaved
equilibrium.

Definition 7. A bid function bik is well-behaved if dt+b
i
k/dv

t is bounded on
(0, 1), for all finite t. The bid profile (bi) is well-behaved if bik is well-behaved
for all agents i and all units k.

Lemma 7 (Partial pooling in FRB). All well-behaved equilibria of the FRB
auction with m ≥ 2 units exhibit partial pooling.

Proof. The unitwise utility function in the FRB auction can be expressed
as

uik
(
bik, b

−i; vk
)

=
(
vk − bik

)
H−im−k+1

(
bik
)

− (k − 1)

∫ bik

0
H−im−k+2 (x)−H−im−k+1 (x) dx.

Since for any unit the agent has the option of bidding 0 and obtaining (at
worst) zero utility, uik(bik(v), b−i; vk) ≥ 0 whenever bik is a best response bid-
ding function. As established above, if equilibrium does not exhibit partial
pooling, bik(v) ≡ bik(vk). It follows that in an equilibrium without partial
pooling,

vk − bik (vk)

k − 1
≥
∫ bik(vk)

0 H−im−k+2 (x)−H−im−k+1 (x) dx

H−im−k+1

(
bik (vk)

) .
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Strict separation, well-behavedness, and best-responsiveness require that
bik(vk) > 0 whenever vk > 0, that bids are dense near 0, and that bik(0) = 0.27

Then in the limit, for all k > 1,

lim
b↘0

∫ b
0 H

−i
m−k+2 (x)−H−im−k+1 (x) dx

H−im−k+1 (b)
= 0.28

When equilibrium is well-behaved and arbitrarily differentiable, for a set
of relevant t ∈ {0, 1, . . . , t̄} l’Hôpital’s rule implies

lim
b↘0

d(t)H−im−k+2 (b)− d(t)H−im−k+1 (b)

d(t+1)H−im−k+1 (b)
= 0.29

Quantity-monotonicity requires that bjk′(v) > bjk′+1(v), and hence by the
nature of the order-statistic model there is some t such that

lim
b↘0

∣∣∣d(t)H−im−k+2 (b)
∣∣∣ > lim

b↘0

∣∣∣d(t)H−im−k+1 (b)
∣∣∣ = 0.

At this t, well-behavedness requires that limb↘0 |d(t+1)H−im−k+1(b)| ≥ 0 is
finite, hence the limit is strictly positive, contradicting strict separation.

It is worth clarifying the role of well-behavedness in Lemma 7. If the
necessary limit (in the proof) does not exist, the Lemma is automatically
satisfied: the limit will fail to exist only when the ratio can be discretely
positive for b arbitrarily close to 0. This alone is sufficient to indicate that
pooling at 0 is advantageous. Thus well-behavedness supports bid density,
and provides that d(t+1)H−im−k+1(0) is finite at the smallest t for which it is
nonzero. We do not have a clean economic interpretation for what it would
mean for this derivative to be infinite while all lower derivatives are zero,
but nor can we rule it out out of hand.

27In a working version of this paper we provide arguments that these statements continue
to hold in the presence of a reserve price r > 0.

28Technically only a weak inequality, ≤ 0, is required. Given the relationship between
H−i

m−k+2 and H−i
m−k+1 it is straightforward to show that strict inequality cannot be satis-

fied.
29This limit makes clear the hidden role of the assumption that m ≥ 2 units are available.

When m = 1, H−i
m−k+2 = 0, invalidating this proof approach. This is to be expected, since

with m = 1 unit available the FRB auction is equivalent to a second-price auction, which
admits a well-behaved, separating, truthful equilibrium.
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Remark 2. With n = 2 bidders and m ≥ 2 units, all equilibria of the
FRB auction in weakly-dominant strategies exhibit partial pooling. Because
truthful reporting for the first unit is weakly-dominant, d(t)H−i1 (0) is finite
for the lowest t at which it is nonzero, implying that Lemma 7 can be applied
directly.

Remark 2 makes use of a further wrinkle in well-behavedness. It is not
necessary that all H−im−k+1 be well-behaved, only that there exists an agent i

and a unit k such that H−im−k+1 is well-behaved. This allows for the following
proposition.

Proposition 7 (Inefficient equilibrium in FRB). All equilibria of the FRB
auction satisfy one (or more) of the following two properties:

i. Equilibrium is inefficient.

ii. For all agents i and all units k, d(t)H−im−k+1(0) is infinite at the lowest
t at which it is nonzero.

6.2 Partial Pooling in the Pay-as-Bid Auction

As the bid-for quantity increases, the marginal distribution of opponent
values shifts upward; the relative lack of competition for small quantities
implies partial pooling in the PAB auction. In the case of two bidders a
bidder will win unit 1 if and only if her opponent does not win unit m;
similarly the bidder will win unit 2 if and only if her opponent does not
win unit m − 1. Since her opponent’s marginal distribution of values for
unit m− 1 dominates the distribution of values for unit m, the bidder faces
less competition for unit 1 than she does for unit 2. Ideally, given a value
v1 = v, v2 = v she would bid less for unit 1 than for unit 2, bumping into
the quantity-monotonicity constraint.30

When the quantity-monotonicity constraint is binding, bids cannot be
written as products of independent bids across the units the bidder demands.
Intuition suggests that partial pooling is present: if the bid b1 = b, b2 = b is
observed, it cannot be known whether this bid has resulted from individual
unconstrained bids, or bids that pass through the monotonicity constraint.
Then values cannot be inverted out from observed bids, and there is some
degree of pooling present in equilibrium.

30This was explored in a divisible-good context by Woodward [2016].
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Lemma 8 (Equal upper bounds). Let b̄ be the maximum bid submitted for
any unit, and let b̄ik be bidder i’s maximum bid for unit k. There are two

bidders, i and j, such that b̄ik = b̄jk′ for all units k and k′.

We now turn attention to continuous-bid equilibria, in which bids are
continuous functions of value. Continuity is the barest form of equilibrium
tractability. In the two-bidder case standard aguments suffice to rule out
discontinuities in equilibrium bid functions, but in general this is less clear.31

Nonetheless, we are able to show that equilibria in continuous bids exhibit
partial pooling. Since partial pooling implies inefficiency, as do discontin-
uous bids, it follows that all equilibria in the PAB auction are inefficient.
Further, inasmuch as partial pooling makes equilibrium computation more
difficult, and discontinuous equilibria also present computational challenges,
these results can be taken as suggesting a general intractability of PAB auc-
tion equilibria.32

We define a maximal bidder as a bidder i such that b̄ik = b̄ for all k;
Lemma 8 implies that at least two maximal bidders exist.

Lemma 9 (Monotonicity of distributional differences). Let i be a maximal
bidder, and let δk(b) = H−im−k+1(b) − H−im−k(b). In any strictly-separating,
continuous-bid equilibrium of the PAB auction, limb↗b̄ δk(b) > 0 for all k ∈
{1, . . . ,m− 1}.

Corollary 4 (Partial pooling in PAB). Contiunous-bid equilibria in the
pay-as-bid auction exhibit partial pooling.

Remark 3. With n = 2 bidders, all equilibria of the PAB auction exhibit
partial pooling. When there are only two bidders in the model, the prob-
lem is analogous to a set of simultaneous two-bidder asymmetric auctions.
Since the support of valuations is convex, standard results imply that bids
are continuous in value, satisfying the antecedent of Lemma 4.

Proposition 8 (Inefficient equilibrium in PAB). All equilibria of the pay-
as-bid auction are inefficient.

31This is observed throughout the single-unit auction literature; with multiple units,
the problem is exacerbated. For example, if each bidder has positive value for all m units
(mi = m for all i), then when determining the bid for her m − 2nd unit a bidder must
consider not only the possibility that any of her opponents receives 2 units and all the
others receive 0 units (this is analogous to the single-unit case), but also to the possibility
that any combination of two opponents each receives 1 unit while all others receive 0 units.
This iso-allocation set makes standard no-gaps arguments inapplicable.

32This is in line with known results about multi-unit auctions, including Hortaçsu and
Kastl [2012].
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Proof. In equilibrium, bid functions are either continuous or discontinuous.
If they are continuous, equilibrium exhibits partial pooling (Lemma 4). Be-
cause the closure of the equilibrium bid set must be convex, when bids are
discontinuous it must be that higher-value agents sometimes lose a unit to
lower-value agents, implying inefficiency. In either case, outcomes are inef-
ficient.

6.3 Low-Revenue Equilibria and Multiplicity

It has been noted (e.g., Engelbrecht-Wiggans and Kahn [1998], and Ausubel
et al. [2014]) that the FRB auction frequently admits equilibria with arbi-
trarily small seller revenue. As implied by the proof of Lemma 7, all equi-
libria in the FRB auction yield zero revenue with positive probability. We
show now that the LAB auction does not admit any such equilibria.

Proposition 9 (Zero-revenue equilibrium in FRB). The FRB auction al-
ways admits zero-revenue equilibria. The LAB auction never admits zero-
revenue equilibria.

Proof. Construction of low-revenue equilibria in a multi-unit setting is sim-
ilar to that in a single-unit setting:33 take numbers (m̃i) ∈ Nn

0 such that∑n
i=1 m̃i = m. Pick s̄ ≥ 1 and let bidder i submit the bid

bi (q; v) =

{
s if q ≤ m̃i,

0 otherwise.

Then the equilibrium price is always zero, independent of the agents’ private
information; moreover, to win a greater quantity agent i must bid s for unit
m̃i + 1, obtaining weakly negative gross utility on this unit and incurring an
additional payment of m̃is. This is never utility-improving, hence these bid
functions represent an equilibrium.

It is straightforward to show, by contradiction, that the LAB auction
does not admit zero-revenue equilibria. Letting qi(vi, v−i) be the equilibrium
quantity allocation of agent i given value profiles vi and v−i, it is without loss
of generality to assume that qi(vi, v−i) < m with positive probability.34 Note
that for almost all v−i such that qi(vi, v−i) < m, bi(qi(vi, v−i) + 1; si) = 0;
furthermore, b−i(m−qi(vi, v−i)+1; v−i) = 0. Then by increasing her bid for
units q > qi(vi, v−i) to ε > 0, bidder i will incur an additional cost of at most

33See, e.g., Milgrom [2004], pages 262–264.
34This follows from market clearing and the fact that we can focus on any particular

agent.
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mε but will win unit qi(vi, v−i) + 1 with discretely positive probability. For
ε sufficiently small this deviation is profitable, hence there is no low-revenue
equilibrium.

Proposition 9 establishes that the FRB pricing rule admits many zero-
revenue equilibria, however the notion of “many” in this context is ill-
defined. In particular, it is possible that the zero-revenue equilibria have
measure zero in the set of all equilibria. This caveat aside, because the zero-
revenue equilibria are simple focal points for collusive behavior, whether
they are measurably present in the set of all equilibria does not affect the
fact that they present a real practical concern.

7 Conclusion

We have defined a model of multi-unit auctions in which bidders have private
values given by ordered draws from a single distribution. In this model,
we show that the last accepted bid uniform-pricing rule induces bidding
incentives analogous to those in a single-unit first-price auction. We show
that the last accepted bid auction can admit a tractable representation and
can be both efficient and fully-revealing of bidders’ private information. By
noting the connection between bidding incentives in a single-unit first-price
auction and a multi-unit last accepted bid auction, we identify a new salient
feature common to both auctions: in both auctions, bidders pay the highest
market-clearing price.

We compare the last accepted bid auction to the first rejected bid uniform-
price and the pay-as-bid auctions. We show that in each of these auctions
bidder information is confounded in all well-behaved equilibria. This fur-
ther implies that these auctions are generally inefficient. We provide an
additional construction which emphasizes that the first rejected bid auc-
tion always admits low-revenue equilibria, a phenomenon which cannot be
sustained in the last accepted bid auction.

Taken as a whole, our results are strongly in favor of employing the
last accepted bid pricing rule rather than the first rejected bid pricing rule
when a uniform-price auction is implemented. To date the literature has
overlooked the possibility of a meaningful difference between the two; we
show that this difference is real and has material implications in support of
the last accepted bid auction.
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A First-order conditions for leading example

A.1 Last accepted bid

The agent’s utility can be expressed as

ui
(
bi; vi

)
= vi1F

(2) ◦ ϕ−i2

(
bi1
)

+ vi2F
(1) ◦ ϕ−i1

(
bi2
)

−
(
F (2) ◦ ϕ−i2

(
bi1
)
− F (1) ◦ ϕ−i1

(
bi1
))
bi1 − 2bi2F

(1) ◦ ϕ−i1

(
bi2
)

−
∫ ϕ−i

1 (bi1)

ϕ−i
1 (bi2)

b−i1 (v) dF (1) (v) .

From here, it is straightforward to compute the model’s first-order con-
ditions,

∂

∂bi1
:
(
vi1 − bi1

)
dF (2) ◦ ϕ−i2

(
bi1
)
dϕ−i2

(
bi1
)
−
(
F (2) ◦ ϕ−i2

(
bi1
)
− F (1) ◦ ϕ−i1

(
bi1
))

;

∂

∂bi2
:
(
vi2 − bi2

)
dF (1) ◦ ϕ−i1

(
bi2
)
dϕ−i1

(
bi2
)
− 2F (1) ◦ ϕ−i1

(
bi2
)
.
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Assuming a symmetric equilibrium many subscripts can be dropped; substi-
tuting in for the known order statistic distributions (F (1)(x) = x2, F (2)(x) =
2x− x2) gives

2 (ϕ1 (b)− b) (1− ϕ2 (b)) dϕ2 (b)−
(

2ϕ2 (b)− ϕ2 (b)2 − ϕ1 (b)2
)

= 0;

(ϕ2 (b)− b)ϕ1 (b) dϕ1 (b)− ϕ1 (b)2 = 0.

A.2 First rejected bid

The agent’s utility can be expressed as

ui
(
bi; vi

)
= vi2F

(1) ◦ ϕ−i1

(
bi2
)
− 2

∫ ϕ−i
1 (bi2)

0
b−i1 (v) dF (1) (v)

−
(
F (2) ◦ ϕ−i2

(
bi2
)
− F (1) ◦ ϕ−i1

(
bi2
))
bi2

+ v1F
(2) ◦ ϕ−i2 (b1)−

∫ ϕ−i
2 (bi1)

ϕ−i
2 (bi2)

b−i2 (v) dF (2) (v) .

From here, it is straightforward to compute the model’s first-order con-
ditions,

∂

∂bi1
:
(
vi1 − bi1

)
dF (2) ◦ ϕ−i2

(
bi1
)
dϕ−i2

(
bi1
)

;

∂

∂bi2
:
(
vi2 − bi2

)
dF (1) ◦ ϕ−i1

(
bi2
)
dϕ−i1

(
bi2
)
−
(
F (2) ◦ ϕ−i2

(
bi2
)
− F (1) ◦ ϕ−i1

(
bi2
))
.

B Proofs of information pooling properties

Proof of Lemma 5. We analyze each auction in turn. Note that it is without
loss in each case to consider the agent as bidding for all m available units,
with the constraint that she has zero value for units k > mi.

FRB. Utility is written as

ui
(
bi, b−i; v

)
=

m∑
k=1

(
k∑

k′=1

vk′ − kbik+1

)
Pr
(
b−im−k ≥ b

i
k+1 ≥ b−im−k+1

)
+

(
k∑

k′=1

vk′ − kE
[
b−im−k+1

∣∣ bik ≥ b−im−k+1 ≥ b
i
k+1

])

× Pr
(
bik ≥ b−im−k+1 ≥ b

i
k+1

)
.
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The relevant probabilities are

Pr
(
b−im−k ≥ b

i
k+1 ≥ b−im−k+1

)
= H−im−k+1

(
bik+1

)
−H−im−k

(
bik+1

)
,

Pr
(
bik ≥ b−im−k+1 ≥ b

i
k+1

)
= H−im−k+1

(
bik
)
−H−im−k+1

(
bik+1

)
.

Algebraic manipulation gives a separable utility form of

ui
(
bi, b−i; v

)
=

m∑
k=1

vkH
−i
m−k+1

(
bik
)
−
(
H−im−k+2

(
bik
)
−H−im−k+1

(
bik
))

(k − 1) bik

− k
∫ bik

0
bdH−im−k+1 + (k − 1)

∫ bik

0
bdH−im−k+2.
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LAB. Utility is written as

ui
(
bi, b−i; v

)
=

m∑
k=1

(
k∑

k′=1

vk′ − kbik

)
Pr
(
b−im−k ≥ b

i
k ≥ b−im−k+1

)
+

(
k∑

k′=1

vk′ − kE
[
b−im−k

∣∣ bik ≥ b−im−k ≥ b
i
k+1

])

× Pr
(
bik ≥ b−im−k ≥ b

i
k+1

)
.

The relevant probabilities are

Pr
(
b−im−k ≥ b

i
k ≥ b−im−k+1

)
= H−im−k+1

(
bik
)
−H−im−k

(
bik
)
,

Pr
(
bik ≥ b−im−k ≥ b

i
k+1

)
= H−im−k

(
bik
)
−H−im−k

(
bik+1

)
.

Algebraic manipulation gives a separable utility form of

ui
(
bi, b−i; v

)
=

m∑
k=1

vkH
−i
m−k+1

(
bik
)
−
(
H−im−k+1

(
bik
)
−H−im−k

(
bik
))
kbik

− k
∫ bik

0
bdH−im−k + (k − 1)

∫ bik

0
bdH−im−k+1.

35This form is a convenient symmetric shorthand, but H−i
m+1 is ill-defined. Since this

term is in [0, 1] and is always premultiplied by (1 − 1) = 0, the exact specification is
irrelevant.
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PAB. This is essentially trivial. Note that utility has a naturally sepa-
rable form,

ui
(
bi, b−i; v

)
=

mi∑
k=1

(
vk − bik

)
H−im−k+1

(
bik
)
.

Proof of Lemma 6. Note that strict separation implies that strategies are
strictly monotone in value. If strategies cannot be separated as in the state-
ment of the Lemma, the monotonicity constraint must be binding.36

Suppose first that bids are continuous in value. If the bid profile cannot
be written as a product of independent dimensional bids, the monotonicity
constraint must be binding over some product of nondegenerate intervals
[bk, bk) × · × [bk′ , bk′). Because bids are continuous in value, bids are not
invertible on this range; since this range has positive measure (and can be
expanded to account for higher and lower units for which the monotonic-
ity constraints are not binding) it follows that equilibrium is not strictly
separating, a contradiction.

Now suppose that the monotonicity constraint is binding at a point at
which bids are discontinuous in value. Because dimensional utilities satisfy
increasing differences and are continuous in value, there is a neighborhood
below this point on which the monotonicity constraint is binding and bids
are locally continuous. Then the above argument holds.

Proof of Lemma 8. Let b̄ik be bidder i’s maximum bid for unit k; without
loss of generality, this is b̄ik = bik(v̄). Suppose that b̄ik 6= b̄−im−k+1, and without

loss of generality assume that b̄ik > b̄−im−k+1. Then anytime bidder i submits a

bid b ∈ (b̄−im−k+1, b̄
i
k], she wins unit k with probability 1; she could reduce her

bid without affecting her winning probability, improving her utility. Then
b̄ik = b̄−im−k+1 for all units k.

Bid monotonicity requires that b̄ik ≥ b̄ik′ for all k′ ≥ k. Then

b̄ik ≥ b̄ik′ = b̄−im−k′+1 ≥ b̄
−i
m−k+1 = b̄ik.

Then b̄ik = b̄ik′ for all k′ ≥ k, and bidder i’s maximum bid is independent of
the unit she is bidding for. Since this maximum bid is equal to bidders’ −i

36Due to standard peculiarities of measure zero, this statement is true when constrained
to left-continuous bid functions but may fail in the presence of arbitrary discontinuities. It
is straightforward to show that any monotone strictly separating equilibrium is incentive
equivalent to an equilibrium which is left continuous in value, thus this statement is more
or less without loss of generality.
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maximum bid for the complementary unit, the maximum bid is independent
of unit and agent.

Proof of Lemma 9. If bidder i’s best-response bid function for unit k, b?k, is
continuous, it must be that H−im−k+1 is continuous; moreover, where H−im−k+1

is not differentiable it has a “downward” kink. Following the first-order
conditions of the model, for any v ∈ (0, 1) it must be that either

b?k (v) > b?k+1 (v) , or d+H
−i
m−k (b?k (v)) < d+H

−i
m−k+1 (b?k (v)) (or both).37

Since b?
k̃

is continuous for each k̃ (by assumption), whenever the first in-
equality holds it must hold over an interval. Note that is must be that there
is some v for which the first inequality holds; otherwise b?k(v) = b?k+1(v) for
all v, implying the second inequality for all b ∈ [0, b̄]. Then there is a mass
point in H−im−k at b̄, which is inconsistent with i submitting a continuous bid
function.38

Let v be such that b?k(v) > b?k+1(v). Appealing to incentive compatibility
and first-order dominance,

(v − b?k (v))H−im−k+1 (b?k (v)) ≥
(
v − b?k+1 (v)

)
H−im−k+1

(
b?k+1 (v)

)
>
(
v − b?k+1 (v)

)
H−im−k

(
b?k+1 (v)

)
≥ (v − b?k (v))H−im−k (b?k (v)) .

These inequalities imply

H−im−k+1 (b?k (v))

H−im−k
(
b?k (v)

) >
H−im−k+1

(
b?k+1 (v)

)
H−im−k

(
b?k+1 (v)

) .

Continuity and maximality imply that there is ṽ with b?k+1(ṽ) = b?k(v). Then

H−im−k+1 (b?k (ṽ))

H−im−k
(
b?k (ṽ)

) ≥ H−im−k+1

(
b?k+1 (ṽ)

)
H−im−k

(
b?k+1 (ṽ)

) .

37The use of b?k (instead of b?k+1) is irrelevant here, and is used solely to ensure that
attention is focused on a single bid. It is also sufficient to consider only right derivatives,
which are finite at all relevant points (otherwise a slight increase in bid would trivially be
profitable, and would be feasible since bids are necessarily below values whenever right
derivatives are nonzero).

38Either i’s bid function is discontinuous, or the high bid is such that b̄ = 1. In this
latter case, the existence of a mass point implies some of i’s opponents are bidding above
their values and winning with positive probability, which is not a best response in the
PAB auction.
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Let I(b) be the interval over which b?k(v′) > b?k+1(v′),

I (b) =

[
inf
{
b?k
(
v′
)

: b?k
(
ṽ′
)
> b?k+1

(
ṽ′
)
∀ṽ′ ∈

(
v′, v

]}
,

sup
{
b?k
(
v′
)

: b?k
(
ṽ′
)
> b?k+1

(
ṽ′
)
∀ṽ′ ∈

[
v, v′

)}] .
The preceding inequalities and standard sequential arguments imply that
the difference between the CDFs H−im−k+1 and H−im−k is maximized at the
interval’s right endpoint,

H−im−k+1 (min I (b?k (v)))−H−im−k (min I (b?k (v)))

< H−im−k+1 (max I (b?k (v)))−H−im−k (max I (b?k (v))) .

The right endpoint of the interval is either the left endpoint of another
interval on which b?k(ṽ) > b?k+1(ṽ), or of an interval on which d+H

−i
m−k(b) <

d+H
−i
m−k+1(b). In the latter case, the difference between the two CDFs is

again maximized at the right endpoint of the subsequent interval (and the
former case is as analyzed above). In either case, the difference between
the CDFs at the right endpoint is increasing in the location of the interval.
Since H−im−k+1 �FOSD H−im−k, it follows that H−im−k(b̄) < H−im−k+1(b̄) and

hence H−im−k has a mass point at b̄.

Proof of Corollary 4. This is a direct consequence of Lemmas 8 and 9. At
b̄, H−im−k+1(b̄) > H−im−k(b̄), contradicting best response behavior.

C Proofs of equilibrium properties

Proof of Proposition 5. When bids are separating there can be no mass
points in the bid distribution. This proof proceeds by ruling out gaps in first-
unit bids, then successively ruling out differently-oriented kinks in bids.39

Recall from Appendix ?? that separable payoffs for bids for the two units
are

u1 (b; v) = (v1 − b1)H2 (b1) +

∫ b1

0
H1 (x) dx,

u2 (b; v) = (v2 − b2)H1 (b2)−
∫ b2

0
H1 (x) dx.

39In a monotone separating equilibrium, the quantity-monotonicity constraint will never
strictly bind. This proof can be adapted to allow for binding monotonicity constraints,
but it is not necessary to the point at hand.
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The relevant probabilities are

H1 (x) = F1 (ϕ1 (x))n−1 ,

H2 (x) = (n− 1)F1 (ϕ1 (x))n−2 F2 (ϕ2 (x)) (1− F1 (ϕ1 (x))) +H1 (x) .

Suppose that there is a gap (discontinuity) in a symmetric equilibrium first-
unit bid function b1. As is clear from the definition of unitwise utility,
second-unit bids will never be placed in this gap; H1 is constant on this gap
so unitwise utility is strictly decreasing. Then if there is a gap in the first-
unit bid there is a gap in the aggregate market-clearing price distribution.
As in other auction models, there is no incentive to bid just above the
upper bound of the common gap, implying that this is not possible in an
equilibrium without mass points.

Now suppose that there is a downward kink in b1 at q, so that

lim
ε↘0

b1 (q)− b1 (q − ε)
ε

> lim
ε↘0

b1 (q + ε)− b1 (q)

ε
.

Since second-unit bids depend only on the first-unit bid function and there
are no mass points, there must be a gap above q in the second-unit bid b2.
Then F2 ◦ ϕ2 is constant just above q, and first-unit bids depend only on
F1 ◦ϕ1. The downward kink in b1 then implies either a mass point or a gap
in b1 just above q, which we have shown cannot arise.

Now suppose there is an upward kink in b1 at q, so that

lim
ε↘0

b1 (q)− b1 (q − ε)
ε

< lim
ε↘0

b1 (q + ε)− b1 (q)

ε
.

Since the monotonicity constraint is not binding, this implies a gap in b2
just above q. Per the previous argument regarding the downward kink, this
is not possible in equilibrium.

Since there are no kinks in b1 it is differentiable; this implies (via the
same arguments as above) that b2 is differentiable—non differentiabilities
in b2 will manifest in first-unit incentives, inducing gaps or mass points,
which cannot arise. Then b1 and b2 are differentiable on their support,
and the first-order conditions must be satisfied in a symmetric separating
equilibrium.
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